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ABSTRACT 
Simulation data can inform early design, but for many design 
spaces, there is a need for distilling large amounts of 
performance data into guidance that can support creative, 
interactive design. Automated computational processes 
could help support this activity. This paper demonstrates a 
procedure for finding suggested design directions based on 
automatic simulations of design options for three common 
model types. The workflow involves reading in a static 
geometry and basic simulation information, automatically 
generating dummy variables, running a series of simulations, 
applying data analysis to find a direction for improvement, 
and then returning that direction to the user.  This process is 
demonstrated on a 2D truss for reducing weight, a 3D surface 
structure for increasing stiffness, and an urban neighborhood 
concept for increasing PV potential.  These simulations 
reveal one possible foundation for a future design system that 
intelligently suggests areas of performance improvement for 
an initially fixed truss, shell, or urban form.   
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1 INTRODUCTION 
Early stage architectural design involves creative processes 
in which geometry and other design choices are proposed, 
discussed, and evaluated.  Often, this is done collaboratively 
among people with different preferences, intentions, 
expertise, and goals.  Such a dialogue can produce useful 
exchanges in which a solution is proposed, and experts with 
specific concerns and knowledge suggest a way to improve 
the given design.  This guidance might involve modifications 
to a system, a set of components, how they are to be arranged, 
or other decisions that must be made.  For certain buildings 
and related structures, discussion can be primarily about 
geometry, which has the potential to move or morph 
continuously within a chosen system.  For example, an 
experienced structural engineer might suggest a more 
efficient shape than the initial concept, or a building scientist 

might propose a shifted massing or orientation that reduces 
energy loads or increases access to daylight.  

While these conversations often depend on the experience, 
knowledge, and creativity of those involved, there is 
potential for computer simulations to play a role in making 
suggestions. To start, simulations can quantify the impact of 
recommended design modifications. Beyond this, computers 
themselves might find areas of improvement that are novel 
or counterintuitive for conceptually complex geometries. In 
other areas of life, numerous recommendation systems exist 
that operate in a related way, suggesting new songs or 
products a user might like to purchase.  Yet these systems 
operate on extensive datasets involving many people and 
their actions. Researchers in architecture and urban design 
are considering ways to build up similar datasets in the 
design field [15] and finding other methods for 
computationally responding to preferred design ideas [4]. 
Both approaches could have significant future benefits.   

However, this paper takes a targeted approach to finding an 
immediate direction for design improvement.  The strategy 
starts with an automatic parameterization and simulation-
based exploration of nearby designs, and then finds trends or 
patterns in a dataset generated based on these designs. 
Ideally, a fully formed artificial intelligence system for 
building design could act like a general suggestion engine—
the designer likes “this” geometry; would she or he consider 
trying “that” geometry, which may improve performance? 
Or at least try moving in that direction?  While not a full 
suggestion system, this paper considers ways in which three 
typical geometric types might be evaluated to generate a 
performance-based direction for design improvement. 
Through three case studies, it provides examples of 
meaningful suggested geometric modifications that arise 
from analyzing a dataset originating in the design itself.    

2 BACKGROUND 
Today, design firms are increasingly using parametric 
simulation to generate possible outcomes, determine their 
performance, weigh their merits and drawbacks, and 
ultimately make decisions [9, 13, 18]. The idea of 
performance here refers to quantifiable, desirable aspects of 
buildings, often in the domain of structure, energy, 
daylighting, and acoustics.  Many common simulation 
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engines are connected directly to generative design software, 
making the digital feedback loop between geometry and 
performance more efficient than ever.  As this connection is 
refined, researchers have developed techniques for 
generating catalogues of designs, visualizing complex design 
spaces, finding design space trends, and conducting 
interactive optimization [3, 12, 19, 20].  

Despite the increased prevalence of parametric simulation in 
architectural practice, there remain unresolved issues.  One 
is that designers must often put forth considerable effort to 
code a parametric logic, shape grammars, or other strategy to 
generate possibilities.  This task is frequently reserved for 
specialists and can become time-intensive and tedious if 
done repeatedly for varied design concepts and projects.  To 
relieve burdens related to coding parametric options, 
researchers have attempted to create parametric models that 
generate themselves [10], or domain-specific models that can 
gradually learn how to predict performance from underlying 
structures without extensive new simulation [23]. 

Specific to geometry, some have also created generalized 
workflows for automatically processing geometry and 
connecting it to performance outcomes, including for 
building energy [6], and for views and other urban criteria 
[7].  Disciplines outside architecture have done considerable 
work in shape morphing, as it is fundamental to computer 
graphics and increasingly useful in engineering design [8, 16, 
17].  Much of this work contains sophisticated geometric 
manipulations that improve the design process, but there are 
still opportunities for removing tedium in computational 
workflows through targeted automation.  This paper 
introduces one such application, which is suggesting design 
directions based on performance without the need for coding 
a parametric model specific to the problem being studied.   

Second, the presence of a large design space does not 
necessarily provide guidance [12]—it is up to the user to 
interpret the possibilities and make decisions.  In many cases, 
optimization can fill this role of guidance, finding a high-
performance design within a user-coded parametric design 
space [21].  Yet, there are plenty of instances in practice in 
which a design team generates a conceptual geometry but 
wants a computer to answer a simple question—from a 
design that is already preferred, what is a direction that could 
improve the design in terms of performance?  How should 
the geometry be morphed, and by how much would this 
adjustment improve a given metric?  This paper offers a 
computational strategy for addressing these questions using 
automated parameterization, simulation, and analysis, which 
is especially useful for multi-objective design scenarios or 
when certain objectives are difficult to quantify.   

3 GOALS AND METHODOLOGY 
The goal in this paper is to demonstrate a framework for 
suggesting design improvement on three geometric model 
types that arise frequently in conceptual parametric design—
trussed structures, surface structures, and urban form.  The 
emphasis is on how geometry can be automatically 

parameterized on granular level, and yet pattern recognition 
can find smooth, meaningful, performance-based suggested 
design directions for these geometric typologies.  This paper 
considers structural material quantity, strain energy, and PV 
potential, but this approach could be used with other 
quantitative design objectives, as well as with other data 
science techniques that use an initial dataset to map between 
geometric variables and a global simulation response.  

The general methodology for this workflow is indicated in 
Figure 1.  For each model type, a user must first input a 
geometry along with basic information necessary for   
performance evaluation to be implemented. The input 
geometry can be a preferred design already under 
consideration for architectural reasons, or an atypical shape 
for which designers want to know how to improve the 
performance.  The additional input is specific to technical 
domains—in the examples in this paper, require information 
includes support locations and loading for the structural case 
studies. Ideally the input information required beyond 
geometry is minimal, such that most of the process is 
automated and users can concentrate on rapidly iterating 
input geometries or other aspects of the design.  However, 
there are tradeoffs between the specificity of a given 
evaluation type and its generalizability.   

 

Figure 1. Basic workflow for finding performance-based suggested 
design directions. 

Next, the provided geometry is automatically parameterized 
with “dummy” variables based on its type: nodal locations 
for trussed designs, control points for surfaces, and building 
corner points for urban massing.  Since these selections are 
specific to the model type, they are not generalized further.  
However, a future “user” could have a library of scripts to 
choose from and apply the appropriate base parameterization 
as needed.  Some assumptions must be made at this point—
for example, how many degrees of freedom should the 
trusses and control points have, and how far should they be 
allowed to move?  Must building faces stay orthogonal, or 
should corners be allowed to move independently?  In this 
paper, assumptions are made about each of these questions 
related to scale, dimensionality, and design freedom.  
Although in practice such decisions might need frequent 
updating, certain assumptions could be written once and held 
constant for, as an example, a firm that frequently works on 
gridshell roofs of a typical scale.    

A series of design samples are then generated, and their 
performance is simulated.  These intermediate design 
samples represent slightly perturbed versions of the original.  
As shown in the case studies, the intermediate samples are 
often not useful designs themselves—they may be wrinkled 
shells or nonsensical trusses.  However, trends can still be 
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found by considering them together as a coherent dataset.  To 
analyze this design space and find a direction for 
improvement, canonical correlation analysis (CCA) [11] is 
used.  This analysis provides a set of linear coefficients for 
input variables that maximize correlation with another 
dataset.  Although the primary application of this technique 
is comparing multidimensional sets of data, when used to 
find coefficients for dummy design variables that maximize 
linear correlation with performance, it can produce 
architecturally compelling directions for improvement.  
These directions are then returned to the user by way of their 
coefficients.  A 2D visualization of such an outcome is given 
in Figure 2, showing how two initial parametric variables 
could be remapped such that a user is moving in a direction 
that should improve performance.   

 

Figure 2. A visualization of how data analysis might find a better 
design direction than original variables, for a 2D design space. 

Although the application of CCA to interactive design has 
been described before in [2], this paper extends the method 
to further geometric typologies.  Across all model domains, 
the potential benefits of this approach include finding 
directions for improvement of a complex geometry that 
would be difficult to reveal otherwise; finding directions that 
are counterintuitive; focusing on specific modifications that 
seem to matter most; and synthesizing desired outcomes 
through combined analysis of multi-objective guidance.    

The current implementation of this workflow uses native 
Grasshopper components and custom scripts for the 
automatic  parameterization, and the plug-in Design Space 
Exploration [1] for generating data and manipulating the 
design.  Performance simulations rely on additional plug-ins 
mentioned in the next section.  Once the analysis is 
completed, designers have access to a slider that morphs the 
design along the suggested direction.  As it is directly on the 
Grasshopper canvas, this method of suggestion inherits the 
typical interface and visualization of the parametric design 
software itself.  Although there are currently a few manual 

steps in the procedure (such as triggering the sampling and 
data analysis), these could be automated in the future.  
Although the design manipulation and visualization occur 
directly in Grasshopper, the functionality for suggesting 
directions could also be added to a separate interface.  

At present, this methodology requires many intermediate 
simulations to generate suggested directions. Although the 
sampling and simulation is automated and could be 
completed while a user is executing different tasks, the time 
is still significant. Furthermore, this strategy does not 
provide every way to improve a design, instead giving a 
single direction per desired quantitative objective (although 
in a multi-objective scenario, various combinations of 
priorities could give many directions).  Nevertheless, this 
approach is worthwhile for complicated geometries in which 
it is difficult to extract a single, cohesive suggested direction 
without using data. Its relevance would increase for future 
design environments that run faster simulations and project 
future directions for multiple design goals simultaneously. 
The following three case studies demonstrate initial success 
in finding architecturally meaningful directions of design 
improvement for basic geometries.       

4 CASE STUDIES 

4.1 Trusses 
In this first example, a script automatically parameterizes a 
basic truss and then finds suggested directions for improving 
its performance. Based on the general methodology and 
interface described in Section 3, this workflow incorporates: 
1) reading in a static truss geometry (Figure 3), identifying 
nodes and creating dummy design variables corresponding 
to the location of each node; 2) acquiring design information,  
which includes supports, loads, and boundary conditions; 3) 

 

Figure 3. Initial input geometry and a selection of generated 
intermediate designs for the truss case study.  Compressive 

members are visualized in pink, and tension members in blue. 
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sampling the initial design space; 4) analyzing the resulting 
dataset using canonical correlation analysis; and 5) mapping 
the coefficients back into the original variables to provide a 
new direction for morphing the structure.   

The truss is simply supported and loaded vertically at its 
lower nodes.  For every geometry, Karamba is used to [14] 
apply loads, calculate internal forces, chose an adequate 
member size, and return the sized member. Example 
intermediate designs for the truss are also shown in Figure 3. 
Very few sample designs are viable solutions, due to the 
complete freedom of each node to move independently both 
vertically and horizontally. However, suggested directions 
for improving the performance of the truss (i.e. lowering its 
structural material quantity and subsequent weight) seem 
realistic, as shown in Figure 4.  This figure shows the 
corresponding suggested geometries along with simulation 
results evaluating the structural weight and deflection in 
these geometric directions.  The three columns represent 
different amounts of data, which gives a sense of how many 
simulations are required to generate a coherent result.    

 

Figure 4. Suggested directions for structural improvement from a 
flat truss, indicating that increased depth can lower weight. 

When asked to find a direction that lowers structural weight, 
modifications were returned that generally corresponded to 
truss depth, which tends to control truss efficiency. A 
reasonably smooth transformation occurred for both the 
2,000 and 5,000 sample datasets. This suggests that a fairly 
large amount of data is needed to extract a discernable 
pattern, but there are diminishing returns in the smoothness 
that can be eventually created.  Yet these truss directions are 

encouraging in themselves—no symmetry, constraints, or 
reasonable bounds were imposed on the design initially, 
since the raw nodal locations were used directly as trial 
variables.  More information about this approach and case 
study can be found in [2]. 

4.2 Surface structures 
In the next example, the input geometry is the surface 
structure shown in Figure 5, and the quantitative design goal 
is to minimize strain energy.  In early design, simulation of 
this design objective can assess the efficiency of the shape, 
which has implications for required structural material.  The 
chosen geometry is a loft through a series of curves at 
different heights and orientations, leading to complex double 
curvature. Due to BIM and digital fabrication, such geometry 
is increasingly common for grid shell roofs and other 
structures around the world.  Furthermore, the selection of 
curves with different heights and curvatures will demonstrate 
how canonical correlation analysis can highlight specific 
regions of the surface that require urgent attention for 
improving performance. 

 

Figure 5. The initial geometry and corresponding samples of 
intermediate, automatically generated surface structures.  The 

intermediate structures are not smooth, yet they lead to a rational 
suggested improvement to the original structure. 
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Figure 6. The original surface structure geometry, suggested improvements, and change in performance for these improvements. 

The initial shape is first fed into a script that automatically 
locates control points for manipulation.  In this case, 121 
control points were located along the surface, and were given 
a degree of freedom in the z-direction.  Next, 10,000 samples 
were generated based on this new parameterization, and a 
simulation determined their strain energy.  Karamba was 
again used for the structural simulation, with a uniform load 
in the negative z-direction.  Any edge of the surface touching 
the bottom plane was assumed to be translationally fixed.  
The script created for this paper is generalizable to any input 
surface for which a vertical load and supported edges can be 
assumed and the software can adequately find control points.  
However, unlike the truss, there are no set nodal locations for 
the control points.  Thus, for future testing, the resolution of 
control points might need to be modified to generate 
meaningful results. The structure is approximately 50 m 
long, with a maximum span of ~20 m between supports.    

Next, a canonical correlation analysis was conducted to 
determine coefficients that map a direction to improve the 
performance of the structure.  This direction (and its 
opposite) are visualized in Figure 6, in which the length of 
blue arrows shows how the structure should be modified to 
reduce its strain energy, making it stiffer against the vertical 
load case.  By observation, this technique concentrates on the 
shallower part of the roof, where there is a structurally 
problematic flat zone.  The suggested modification is to 
morph the curvature of certain sections towards a parabola, 
which is more efficient for the load case.  Although this 
modification is visually subtle, moving to the structure 
visualized in Figure 6 cuts the strain energy in half for the 
entire design, as shown in the normalized graph.  It is again 
notable that although the intermediate samples taken 
represent wrinkled, unrealistic structure, the overall analysis 
yields a relatively smooth suggested transition.   
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It must be acknowledged that when working with surface 
structures, there are sophisticated formfinding methods to 
directly arrive at a more efficient structure.  In many 
applications, the force density method, dynamic relaxation, 
or another technique could find a better shape from the 
beginning.  Nevertheless, there are situations in which an 
architectural designer might begin with a complex initial 
form based on their own design goals, which may relate to 
constructability, competing performance objectives, or 
another desired quality.  In these cases, a suggested direction 
like this example might show an avenue to improve 
performance while still staying true to designer intent, or 
initiate a conversation about tradeoffs between structural 
performance and preferred geometric outcomes. 

4.3 Urban massing 
The next case study demonstrates the potential of this 
automated procedure at the urban scale. In this case, the 
designer provides the computer with an initial massing for an 
urban building complex with varying floorplates and heights. 
The goal is to find a direction for modifying the geometry 
that would increase the PV potential of the roofs, assuming 
they would be covered with solar panels.  This methodology  

could be used for urban daylighting or energy simulations, 
although at present a PV calculation runs considerably faster. 
A similar procedure involving dummy parameterization, 
sampling, and analysis is used to determine geometric 
transformations that correlate with increased PV potential.  
The initial variables automatically assigned are the corner 
points of buildings, with the script assuming that buildings 
can grow taller but remain rooted on the ground. The 
simulations for PV potential were conducted for the Boston 
climate using Archsim [5]. The resulting direction is given 
in Figure 7, which shows changes to the design that affect 
the overall appearance and spatial sequence of the buildings.  

Some aspects of this geometric transformation show that the 
urban massing workflow is the least developed, as it is a 
more complex problem requiring additional assumptions in 
the script if designers require a clean final output.  A more 
refined artificial intelligence process will eventually include  
constraints on what is feasible in a real urban setting, and 
build smart rules and capabilities into the design process, 
such as the ability to pick which walls should stay frozen and 
recognize that buildings should be combined when they 
overlap.  

 

Figure 7. The original massing, simulation orientation, and proposed improvement for increasing PV potential across all building roofs.
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Still, the results indicate potentially compelling directions for 
design exploration. For example, the direction for increasing 
PV potential seems to show that the tall, southernmost 
building, which significantly blocks the others in this 
orientation, should be peeled away, while most other 
buildings should spread out to maximize surface area. At the 
urban scale, such suggestions may be more useful than 
building-by-building adjustment due to the geometric 
complexity of separate buildings.  Consequently, they can 
provide a starting point for urban designers for where to 
move next beyond simulation feedback. Such guidance 
would likely be generated for multiple competing interests in 
the design, providing a rich exploration of both the design 
and objective spaces. 

5 DISCUSSION 
Figure 8 gives a visual a summary of the parallel approaches 
to providing a design improvement path for the three 
geometry types. Though these methods show initial success 
in generating meaningful suggestions for design, a 
discussion of applications is provided here. It should be 
mentioned that this automated suggestion workflow should 
not be the only step in design exploration.  As Wortmann 
[22] notes, simplifying a proeblem into a single (or few) 
directions for improvement may miss alternatives that are 
higher performing. A design space might need to be 
expanded, contracted, or modified throughout the process, 
and design space exploration or optimization-based 
workflows are often suitable for this task. 

Thus, this workflow is not a replacement for the approaches 
to data-driven design that have been previously established.  
However, for applications in which designers want to 
specifically consider desirable geometries and have a sense 

for how they might be improved, or control the tradeoff 
between affinity for the original geometry and potential 
performance gains, such an automated process may have a 
role. These situations could include time-pressured processes 
in which there is not time for systematic optimization for a 
single solution, when strong qualitative goals are driving the 
initial geometry generation, or when it is suspected that a 
computer might discover a compelling direction for 
improvement that would be difficult to find intuitively due to 
model complexity or other factors.  Although the examples 
here are preliminary, the ability to extract smooth 
transformations from datasets full of automatically generated 
designs that are not individually useful is encouraging. 
Future experimentation with advanced machine learning 
methods might yield even more effective results. 

Although currently implemented with problem-specific 
parametric design scripts, this research imagines a future 
interface with faster simulation and cumulative information 
from previous designs, in which a variety of metrics could be 
queried automatically as need.  For example, the designers 
of a complex gridshell shape could provide a desired  
geometry and ask how to improve stiffness, reduce structural 
weight, reduce incident solar radiation, or reduce overall 
energy consumption, while having control over subtle 
geometric manipulations that achieve each of these desired 
outcomes.  This interaction might occur before or after a 
more systematic optimization procedure and could augment 
conversations around preferred designs and worthwhile 
changes, whenever these conversations occur in the design 
process.  The preliminary case studies in this paper indicate 
that automatic parameterization combined with data science 
can find compelling design suggestions for such situations.  

 

Figure 8. Summary of workflows and suggested directions for the three case studies. 
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6 CONCLUSION 
This paper has demonstrated a computational procedure for 
generating suggested design directions. This approach 
includes automatic parameterization, performance 
simulation, and data analysis, and it was applied to trusses, 
surface structures, and rectangular buildings. As this 
workflow is still early, there are many areas for future work.  
First, rather than using a combination of scripted components 
and custom code, this could be implemented in its own 
design interface.  A new interface could make additional 
assumptions for each geometric type, as mentioned for the 
case studies, to increase its generalizability for input designs.  
The workflow should also be tested for more complex 
geometry, additional performance metrics, and other data 
analysis techniques that go beyond linear correlation.  Such 
a process could also be combined with ongoing research on 
automatically translating a 2D sketch into 3D models, which 
would allow designers to literally sketch ideas and get 
feedback rather than drawing first in CAD.  Nevertheless, the 
initial results in this paper are a step towards intelligent 
design suggestion based on performance simulation. 
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