
A Three-Tier Architecture Visual-Programming Platform for
Building-Lifecycle Data Management
Mahmoud M. Abdelrahman1, Sicheng Zhan1, Adrian Chong1

1Department of Building, School of Design and Environment,
The National University of Singapore, 4 Architecture Drive, Singapore 117566.

ABSTRACT
In this paper, we present a platform that integrates three main
aspects in the building industry: 1) Building data from both
IoT devices and Building Management System (BMS), 2)
Building Energy modeling and simulation engine, and 3)Data
analysis and optimization libraries. All of which are com-
bined in a three-tier architecture cloud platform. The plat-
form aims to provide useful representations of the data to dif-
ferent stakeholders. We defined three main types of stake-
holders. Each stakeholder uses the platform differently: (1)
End-use programmers, who use visual programming and tex-
tual programming interfaces to perform computational tasks,
(2) Dashboard viewers who are interested in viewing insight-
ful real-time data about performance in the form of charts
and diagrams, and (3) Data feedback inputters such as occu-
pants to give feedback or fill questionnaires. The three-tier
architecture enables the spatial and physical separation of the
databases, the computational engines, and the user-interfaces.
This separation resulted in some advantages such as flexibil-
ity, scalability (horizontal and vertical), reusability, and la-
tency reduction. Currently, the platform is in the final stage of
the alpha release development and will be released as open-
source platform. The following stage includes community
testing and user experience enhancement.

Author Keywords
three-tier architecture; n-tier architecture; Building Energy
Modelling; BEM; building lifecycle; actors; presentation
layer; application layer; data layer

ACM Classification Keywords
I.6.1 SIMULATION AND MODELING: Computing
methodologies Model development and analysis - Software
and its engineering Visual languages

1 INTRODUCTION
The building sector has witnessed immense development re-
cently in the way by which building systems are managed
[45]. This development aimed at alleviating the significant

SimAUD 2020 May 25-27, Online
c© 2020 Society for Modeling & Simulation International (SCS)

environmental impact of this sector (30% of the world en-
ergy consumption and a third of the associated CO2 emis-
sions [20]). Decreasing this impact could be achieved by bet-
ter controlling the resources [5]; providing sustainable, and
more efficient solutions [46]; developing a better understand-
ing of different deterministic and stochastic aspects of the
built environment [10, 36, 43, 11]. In addition, making bet-
ter decisions based on mining ground-truth data (black-box
approach)[31], physics-based simulation models (white-box
approach)[41, 31] or both of them (gray-box approach)[46].

The emergence of the Internet of Things (IoT) devices has
enabled a massive amount of data, which posed some chal-
lenges. The data collected during the last two decades ex-
ceeded that which has ever been collected in history[34].
Two significant challenges, other than the availability of data,
are to be addressed. On the one hand, managing this big
data: transferring, storing, preprocessing, wrangling and min-
ing, optimization, and control in a robust cyber-infrastructure.
This lead to cloud computing or ubiquitous computing, that
is, computing data in place, without paying much effort in
transferring data to local storage/processing machines using
scalable storage and computational power on demand main-
tained by professionals [28, 7, 14]. On the other hand, de-
livering useful information to different stakeholders based on
their use is yet another challenge.

”Data is not information; data must be presented in a us-
able form before it becomes information” [35, p.134]. Raw
data from the built environment varies in its degree of use-
fulness to different stakeholders (actors). ”Usability” is dif-
ferent for different stakeholders. For instance, A Building
Energy Modeller (BEM) requires data such as Green Build-
ing eXtensible Markup Language (gbXML) [19], schedules
of operations, set-points, number of occupants,etc.. At the
same time, a Facility Manager (FM) would be more inter-
ested in reducing maintenance costs by fault detection and
diagnostics (FDD)[47] algorithms and dashboards. This dif-
ference in uses requires users with proper domain knowledge
alongside with programming or procedural thinking skills for
automating, prototyping, analyzing, building work-flows us-
ing the big data and IoT sensors. At the same time, they do
not need to be professional programmers, but rather End-use
programmers.

445PREPRINT PREPRINT

The term End-use programmer (or Novice developer) first in-
troduced by [32] is used to describe non-professionals with-
out programming and code structures knowledge [?]. Most
programs today are written by novice programmers [37] who
use spreadsheets, writing add-ons/plugins to support their
work or add functionality to the software, running MATLAB
simulations [26], writing python codes, or IPython notebooks
[39]. The main difference between the end-user developer
and the professional developer is the goal of the develop-
ment. The former writes a program focusing on getting tasks
done without paying attention to debugging, unit-testing, or
re-usability. However, the latter develops, maintain, debug,
and test a robust software for others to use[25]. End-use de-
velopment mostly involves modifying or extending a software
artifact (known as programming by example, or programming
by demonstration). For example, Extended annotation or pa-
rameterization: whereas a user can define a new functional-
ity by selecting a readily developed set of functions by other
users and stored in shared repositories [24]. To make this task
handy to end-use programmers, a proper programming nota-
tion should be utilized.

Programming notation is the way by which a programming
language is used to represent the state of the world[17]). The
selection of the proper programming notation (e.g., textual,
diagrammatic, or gesture-based) to describe the problem is a
trade-off between several evaluation criteria[17]. This trade-
off should lead non-specialist to find the programming envi-
ronment easy-to-use and easy-to-understand.

A large body of studies have addressed some difficulties re-
lated to the everyday programming tasks such as, but not lim-
ited to, code navigation [13], and hidden dependencies. A
study conducted by Bragdon et al. [9] that uses visual pro-
gramming 2d spatially connected blocks of codes where it is
possible to track each function in the form of bubble showed
that visual programming significantly improve code under-
standing with less code navigation time.

Visual Programming Language (VPL), also known as box-
and-wire programming or data-flow programming utilizes
user-friendly graphical elements to display the flow of data
between different components (Figure 1). To date, there has
been little agreement on the superiority of visual program-
ming languages (VPLs) over the textual programming lan-
guages (TPLs). Green et.al. [18] and Moher et.al. [30]
adopted this stance. However, [29] argued that VPLs could
be significantly useful in motivating beginners to learn to
program as they are informative in the sense of spatial rea-
soning and ideas generation. However, he argued that those
advantages are not generalized and should not be isolated
from the task being studied. Also, TPL is more produc-
tive in terms of large-scale and complex software develop-
ment tasks. There is no conclusive evidence of the supe-
riority of one over the other. Thus, a hybrid VPL/TPL is
proven to be suitable amongst users. Many software enables
this type of scripting which gained wide popularity such as
Rhinoceros VPL Grasshopper[6, 27] whose user-community
extended its limits by contributing to developing TPL based
functions amongst others for building and urban simulation

Figure 1. A screenshot from our platform indicating a parametric simula-
tion process on the cloud using (BuildSimHub). The figure is an example of
Visual programming Language (also known as box-and-wire programming
notation, and data-flow programming) where blocks of code functions are
encapsulated in the boxes (known as components), while data flows from
one or more component output variable to other component input variable.
A component can hold as many inputs as needed, while the code behind
each component follows a specific schema. Some components are used only
as input components such as ”file, numerical, panel” and some components
work as output visualizations such as ”panel, 3d visualization canvas, plot-
ting components ..”

[38, 33, 22], daylight analysis [21, 23], Machine learning[2,
1, 3].

This research addresses two primary problems:

1. Managing buildings’ big data requires flexibility and scal-
ability.

2. Different users use data differently.

We introduce a Three-tier architecture web platform as a res-
olution to these problems. The objectives of this research are:
(1) Making IoT data from the built environment useful to dif-
ferent stakeholders, (2) An Open platform for developing and
sharing different models amongst end-use programmers. (3)
Provide flexibility and scalability by separating the platform
into three distributed layers. The rest of the paper is structured
as follows: In section 2, we explain the three-tier architecture.
The components of the three-tier architecture are explained in
details in the subsequent sections 3 (Actors), 4 (Presentation
Layer), 4.2 (Application Layer), and 6 (Data Layer).

2 THREE-TIER ARCHITECTURE
Three-tier architecture is a client-server software architec-
ture pattern that has several potentials in distribution appli-
cations [8]. The key aspect of this architecture is that it
enables the reusability of program building blocks (also re-
ferred to as components) such as sharing software compo-
nents at run time, replicating the same component, controlled
adaptation of code, or independent adaptation of components
[42, 44]. This pattern consists of three functionally sepa-
rated layers [40] (Figure 2), those are: 1) Presentation layer
(the client-side), 2) Application layer (also known as busi-
ness logic, controllers and process management layer), and
3) Data layer (also known as data storage). The presentation
layer constitutes the user-interface side of the application. All
human-computer interactions (HCI) happen on this layer. On

446PREPRINT PREPRINT

Figure 2. Three-tier architecture structure of the platform

the other side, the Business logic layer consists of the core en-
gine where component functions that carry out the workload
by receiving requests from the presentation layer get the rele-
vant data from the Data layer and process this data then, sends
back the response to the presentation layer. Finally, the Data
layer consists of data querying (acquire from a data source),
storage (stored in the relational database on a local server),
and accessing (feed to the user). Each of these three tires is
discussed in detail in the subsequent sections. A summarized
workflow is illustrated in figure 3.

Advantages of using three-tier architecture [16]:

1. Reusability: The use of a modular component-function
system enables many users/developers to contribute to the
development. This contribution is shared in a public repos-
itory to be reusable by other users with small or no change

2. Scalability (both horizontally and vertically) is another es-
sential feature of using three-tier architecture because of
using distributed servers as well as because of its separa-
tion nature. Horizontal Scalability is achieved by adding
more nodes of the same types where required. While the
Vertical Scalability is achieved by adding more resources
to a host node on demand. On the other hand, separating
different tiers allows scaling each one independently de-
pending on the needs at any given time.

3. Flexibility: As server nodes that are used in the application
layer could be developed, configured and tested separately
without affecting any of the other layers, and then it could
be added to the system on demand. Readily PaaS (Platform
as a Service) is used to maintain consistency and Scalabil-
ity.

4. Latency reduction: As the nodes are distributed on data
centers that are spatially close to the end-user as possible.
This is basically handled by adopting open PaaS (Platform
as a Service) where the infrastructure complexity of servers
are maintained and optimized by professionals.

5. Anytime data processing regardless of the user’s connec-
tion speed. The connection between the application layer
and the data layer is separated from the presentation layer,
reducing the bandwidth load on the user’s side.

3 ACTORS
We use the term ”Actor” to refer to different users/stakehold-
ers within the built environment. ”Usability” is the critical
factor in obtaining ”information” from data. Data obtained
from the built environment does not hold equal usefulness
for all stakeholders. Furthermore, in its raw format, IoT data
consists of many problems, including noise, missing data,

non-valid data, ill-labeled data points, duplicates, and non-
standardized IoT representation. These problems should be
dealt with before delivering this data to non-expert users. We
define some actors or stakeholders who are involved in the
building’s life cycle energy modeling and data analysis and
their corresponding data usage based on a systematic review
conducted by Zou et.al [48] of 10 years publications till 2017
and using Natural language processing (NLP) [4].

Then, we identified three main data-related actions, namely,
End-use programming, Data monitoring, and Data input.
Different stakeholders are clustered based on these three ac-
tivities (Figure 4). Then, these activities are reflected in the
presentation layer (explained in section 4) as three major
components: 1) Hybrid VPL/TPL interface, 2) Interactive,
shareable, embedded dashboards, and 3) Shareable, embed-
ded forms. The interface of the platform is shown in figure
5.

4 PRESENTATION LAYER
The presentation layer acts as the interface for the users. Each
new project has a unique global unique identification (GUID),
which is stored on the data layer and could be called us-
ing its GUID. Three main functions used in the presentation
layer: (1) Visual/Textual programming interface, (2) dash-
boards, and (3) forms are used.

4.1 VPL/TPL interface
Both the visual and the textual programming interface use two
main languages: Python and JavaScript. However, the selec-
tion of which is based on the complexity of the task and the
response time required. For example: if the component func-
tion requires a real-time reaction, then it is more suitable to
use a JavaScript component/script. We refer to the compo-
nent in this case as ”Shallow Function”. While if the func-
tion requires heavy calculation such as Machine Learning
(ML), or Energy Simulation (ES), then Python-based com-
ponents/scripts are used and are referred to as ”Deep Func-
tions”. Examples are shown in figure 6.

Each component must follow specific abstraction schema that
defines its structure and relationships as well as its types.
Mainly, it consists of inputs, the function body, and outputs.
However, other information must be provided when defining
a new component e.g., The dataflowType: either shallow
or deep, the component type: numeric, panel, optionList,
ListItem, Plot, Generic, etc., the category where this com-
ponent falls into, and other supplementary features such as
the color, documentation, and license.

Each component has a unique GUID on a project level.
This GUID is used to trigger the component and call
its inputs and outputs using the TPL panels. For ex-
ample: the deep component (Figure 6) has a GUID :
’c56ad1cf-47ea-4fe3-805b-84d104ecff8b’
could be triggered using the Python API . This allows
the end-use programmer to extend the functionality of the
components by running blocks of codes either before running
the component (i.e. doing preprocessing to the inputs) or
after running the component (i.e. doing post-processing to

447PREPRINT PREPRINT

Figure 3. This figure shows the flow of data within the three tiers: (1) The actor interact with the presentation layer three ways: programming, viewing
dashboards, or giving feedback; (2)The user interaction results in sending requests to the application layer to be processed; (3)The application layer starts
processing inputs and relevant functions; (4) If there is any required data from the databases, a QUERY is sent to the data layer; (5) then, the data layer respond
with the corresponding data from different databases (6,7); (8) The application layer then runs the required components using the distributed engines; (9) The
output of step (7) is responded back to the presentation layer along with the logs/errors in JSON format. higher resolution image can be downloaded here

Figure 4. Actors are functionally clustered into three categories: Data mon-
itoring, Data input, and End-use programming. Those categories constitute
the Presentation layer.

the outputs) using the functions before(callback) and
after(callback) as shown in listing 1 and figure 8.

1 import buildFit as bf
2 import json
3

4 component = bf.getComponent.by_guid("c56ad1cf-47ea
-4fe3-805b-84d104ecff8b")

5 if component.inputs[0] == None:
6 compoent.inputs[0] = "http://google.com"

Figure 5. The main interface functions – a higher resolution image can be
viewed here.

7

8 def preprocessInputs(input1):
9 ’’’This function is applied to the input

before running the component’’’
10 return input1
11

12 def postprocessOutputs(output1):
13 ’’’This function is applied to the output

after running the component’’’
14 return json.parse(output1)
15

16 inp1 = component.before(preprocessInputs,
component.inputs[0])

17 out1 = component.after(postprocessOutputs,
component.outputs[0])

Listing 1. Triggering a VPL component using TPL Pyton interface

4.2 Dashboard and forms
The dashboard and forms are located in the same tab called
’Dashboard’. It is an information management tool directed
to stakeholders who are not involved directly in the develop-
ment of the project i.e., to track performance, metrics, and

448PREPRINT PREPRINT

https://user-images.githubusercontent.com/6969514/72152397-cee71700-33e5-11ea-9108-c6823d2be504.png
https://raw.githubusercontent.com/ideas-lab-nus/paper-SIMAUD2020-three-tier-architecture-platform/master/paper_LateX/imgs/platform_interface.png

Figure 6. Two examples of Shallow and Deep functions. 1. The deep func-
tion is Python-based, and hosted on the application layer, the ”play button”
on the bottom of the component must be clicked to run the deep function.
2. The shallow function is JavaScript based and is hosted on the front-end.
However, all the shallow functions are stored in the data layer and follow
specific schema. The shallow functions are used to implement real-time ac-
tions, such as arithmetic operations, and JavaScript Object Notation (JSON)
parsing. In this figure, the deep function on the left uses OSISoft Python API
to request time-series data from the data layer and outputs it as a JSON ob-
ject. Then, the shallow component on the right parses the JSON object and
converts it into different formats, including plotting.

Figure 7. The data flows within components from left to the right. Each input
of the component either carries a default value or receive value from other
component’s output, this value is stored in the input until the component runs,
then the input variables are processed by calling the corresponding function.
After the function is called, the return output of the function is stored back
into the output of the component unless this output is connected to other
component’s input, it runs the other component automatically.

other key data points; or to get feedback and other user inputs
(questionnaires or thermal comfort feedback). The project
owner does the design of the dashboard, using the input com-
ponents (e.g., numeric slider, optionList, listView, RadioBut-
tons, and Panels) and the output components (e.g., Panels,
Plots, 3D views, 2D plans, images, videos etc.). Then, the
dashboard could be shared with public or specific people to
view or interact. It can also be embedded within other web-
sites.

5 APPLICATION LAYER
The application layer receives the deep function requests
from the presentation layer in the form of a JSON object
following specific schema. On the one hand, If there are
data-related processes, it sends a request to the data layer (ex-
plained in detail in section 6. On the other hand, if there are
no database-related processes, the JSON object consisted of
the inputs and the component function callback. The function
then starts to operate in three cases:

Figure 8. TPL interface using Python script. The python script enables read-
ing, writing inputs and outputs of different components, as well as adding
pre/post processing functions to the inputs/outputs – a higher resolution im-
age can be viewed here

1. It runs the function directly from the node.

2. It starts other cloud engines to run the functions.

3. It uses third party engines (e.g. BuildSimHub) to perform
the operation.

Consequently, the function response back to the presentation
layer as a JSON object with the outputs (if any), Errors, and
logs. The response JSON object also follows a predefined
schema as shown in figure 7. The whole process is illustrated
in figure 3 (steps: 1, 2, 3, 8, 9).

6 DATA LAYER
There are four major types of data involved in this platform:
metadata of the users and projects, metadata of the buildings,
building models, and building operational data. The data
layer has three main functions: Data querying: to acquire
data from multiple data sources, Data storage: to store dif-
ferent types of data, and Data feed: to respond to the requests
from the application layer.

The metadata and models are either input by the users through
the presentation layer or assigned by the application layer.
These data are mainly text. Once passed to the data layer,
they are static and stored in the relational databases (Figure
9). As for the building operational data, the time series data
comes from servers of different Building Management Sys-
tems. BMS in different buildings are various, in terms of data
structure, sampling rate, communication protocol, etc., mak-
ing data querying a troublesome task. The platform dealt with
this by deploying the PI system from OSIsoft, which queries
data from different types of servers, such as BACnet (Build-
ing Automation and Control networks) and OPC (Open Plat-
form Communications), and stores the compressed data on
the local server.

Data exchange between the application layer and the data
layer is done through RESTful API and mainly in JSON for-
mat. For example, if a user wants to see the energy consump-
tion trend of a building, he/she will select the data point and
define the time period in VPL canvas. The deep functions in
the application layer will get the information and accordingly
send the request. The API will retrieve data from the server
and send it back as a JSON file, which will then be plotted in
the canvas.

449PREPRINT PREPRINT

https://raw.githubusercontent.com/ideas-lab-nus/paper-SIMAUD2020-three-tier-architecture-platform/master/paper_LateX/imgs/tpl_interface.png

Figure 9. Relational database: A higher resolution image can be downloaded
here.

7 USE CASE SCENARIO
In this section, we introduce a use case based on Cockburn’s
template [12] to illustrate how the platform works. The use
case is a parametric energy simulation of a small office build-
ing from ANSI/ASHRAE/IES Standard 90.1 commercial ref-
erence buildings [15] shown in figure 10.

Figure 10. One of the reference buildings developed by the U.S. Department
of Energy (DOE). The building represents a small office with 5,500 square
feet area and one floor. The image is a screenshot taken from the embedded
3d viewer in our platform, and provided by BuildSimHub (in the application
layer). an animated GIF of the 3d-viewer could be viewed here

USE CASE:1 Conduct a Parametric Energy Simulation
- -
CHARACTERISTIC INFORMATION
Context of use: EnergyModeller conducts a parametric
building energy simulation of a small office building using
the three-tier architecture platform.
Scope: Platform
Level: Summary
Preconditions: The user must have a valid authentication
to the platform and a supported web browser (e.g. Google
Chrome).
Actor(s): EnergyModeller, BuildSimHub (cloud simulation
engine).

Trigger: Firstly, the EnergyModeller should start a new
project. Secondly, IDF file of the EnergyPlus model of ver-
sion greater than 8.0.

Description:

1. EnergyModeller starts a new definition – (Tier1 - presenta-
tion layer).

2. In the presentation layer, the EnergyModeller uploads the
IDF file to the data layer (Tier 3) which is a scalable google
cloud bucket using a file upload component (Figure 11).
This step takes place through the application layer (Tier2)
which contains a Google Cloud Storage application pro-
gramming interface (API) and other file validation and se-
curity checks – an animated GIF image could be viewed
here.

3. The IDF file link and global unique id (GUID) are re-
trieved.

4. EnergyModeller loads a ”buildSimHub Parametric Study”
component (Figure 12).

5. After running the component, a request is sent to the sim-
ulation engine in the application layer including the inputs
(IDF file, project api key, and the simulation parameters).

6. The output of the simulation comes in a form of JavaScript
Object Notation (JSON) as well as a chart (Figure 13) – a
full view of the project can be downloaded here.

Figure 11. File upload component in the presentation layer: a) The user is
prompted to select a file. The file is uploaded to a google cloud bucket; b)
Then, the file could be triggered by its global unique id

8 CONCLUSION
In this paper, we explained an approach for applying Clien-
t/Server based architecture called 3-tier architecture (sum-
marized in figure 3). This approach is used for managing
data from the built environment using a cloud-based user-
friendly visual programming interface. This approach de-
pends on separating the client-side (called the presentation
layer) from the back-end engines (the application layer) and
the databases (the data layer). This separation eased the distri-
bution of computation power over many nodes without com-
promising the efficiency of the other layers. Furthermore, it
overcame some problems related to latency and connection
speed. Moreover, flexibility and scalability are two key fea-
tures of this type of architecture.

Currently, the platform still in the final stages of develop-
ing and debugging the alpha release. The platform will
be released as an open source and contributions are wel-
come from the community. Contribution instructions will
be available on the following GitHub repository:

https://github.com/ideas-lab-nus/paper-SIMAUD2020-three-
tier-architecture-platform

450PREPRINT PREPRINT

https://user-images.githubusercontent.com/6969514/72235771-e9e89f80-360e-11ea-9cf7-91c0f521576c.jpeg
https://user-images.githubusercontent.com/6969514/77833696-3eb1a600-717a-11ea-8f77-475be6d57cfb.gif
https://user-images.githubusercontent.com/6969514/77833649-16c24280-717a-11ea-9df1-8a5e0f7bae83.gif
https://user-images.githubusercontent.com/6969514/77868854-2ff8eb00-726f-11ea-837d-efedac7a80a5.png
https://github.com/ideas-lab-nus/paper-SIMAUD2020-three-tier-architecture-platform
https://github.com/ideas-lab-nus/paper-SIMAUD2020-three-tier-architecture-platform

Figure 13. Display results as a chart and/or JSON tree in the presentation
layer.

Figure 12. Parametric simulation study: this component runs a cloud simu-
lation engine in the application layer. The inputs are: (1) The project api key,
i.e. a unique id for each simulation project, and is used to track the project
and run different simulation models’ progress; (2) file dir: which is the IDF
file stored in the data layer (tier 3) in the form of a flat file; (3) The simula-
tion parameters. After running the component, the outputs (4) come in the
form of JavaScript Object Notation (JSON) object and a plot which can be
displayed in a panel (Figure 13) and embedded in a website.

Future development includes enabling real-time teamwork,
version controls, besides continuous testing and user-
experience improvements.

ACKNOWLEDGMENTS
This paper is a part of a project funded by the Ng Teng Fong
Charitable Foundation (NTFCF) research funding.

REFERENCES
1. AbdelRahman, M. GH CPython: CPython plugin for

grasshopper, 2017.
2. Abdelrahman, M. M. Enhancing Computational Design

with Python high performance scientific libraries :
Integration of Grasshopper and CPython language. 2–3.

3. Abdelrahman, M. M., and Toutou, A. M. Y. [ANT]: A
Machine Learning Approach for Building Performance
Simulation: Methods and Development. The Academic
Research Community publication 3, 1 (2019), 205.

4. Abdelrahman, M. M., Zhan, S., and Chong, A. Building
Life-Cycle Usability Data Segmentation: A NLP-based
review. Unpublished work (2020).

5. Allcott, H., and Mullainathan, S. Behavior and energy
policy, 3 2010.

6. Bachman, D. Grasshopper: Visual Scripting for
Rhinoceros 3D. 2017.

7. Bhardwaj, S., Jain, L., and Jain, S. Cloud Computing : a
Study of Infrastructure As a Service (Iaas).
International Journal of Engineering 2, 1 (2010), 60–63.

8. Booch, G., Maksimchuk, R. A., Engle, M. W., Young,
B. J., Connallen, J., and Houston, K. A. Object-oriented
analysis and design with applications, third edition.
ACM SIGSOFT Software Engineering Notes 33, 5
(2008), 29.

9. Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S.,
Cheung, W., Kaplan, J., Coleman, C., Adeputra, F., and
Laviola, J. J. Code bubbles: A working set-based
interface for code understanding and maintenance. In
Conference on Human Factors in Computing Systems -
Proceedings, vol. 4 (2010), 2503–2512.

10. Brohus, H. ., Frier, C. ., Heiselberg, P., and Haghighat, F.
Quantification of Uncertainty in Predicting Building
Energy Consumption: a stochastic approach. Energy and
Buildings 55 (2012), 127–140.

11. Chong, A., Xu, W., and Lam, K. P. Uncertainty analysis
in building energy simulation: A practical approach.
14th International Conference of IBPSA - Building
Simulation 2015, BS 2015, Conference Proceedings
(2015), 2796–2803.

12. Cockburn, A., and Cockburn, A. Use Case Template
Basic Use Case Template. Tech. rep., 1998.

13. De Line, R., Czerwinski, M., Meyers, B., Venolia, G.,
Drucker, S., and Robertson, G. Code Thumbnails: Using
spatial memory to navigate source code. In Proceedings
- IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2006 (2006),
11–18.

14. Dillon, T., Wu, C., and Chang, E. Cloud Computing:
Issues and Challenges.

15. Field, K., Deru, M., and Studer, D. Using DOE
commercial reference buildings for simulation studies.

16. Furht, B., and Escalante, A. Handbook of Cloud
Computing. Tech. rep., 2010.

17. Green, T. R. G. Instructions and descriptions. In
Proceedings of the working conference on Advanced
visual interfaces (2004), 21–28.

451PREPRINT PREPRINT

18. Green, T. R. G., Petre, M., and Bellamy, R. K. E.
Comprehensibility of Visual and Textual Programs: A
Test of Superlativism Against the ’Match-Mismatch’
Conjecture. Proceedings of the Fourth Annual Workshop
on Empirical Studies of Programmers, January (1991),
121–146.

19. Green Building XML (gbXML) Schema. gbXML Green
Building - Current Schema, 2019.

20. Iea. Tracking Clean Energy Progress 2016: IEA Input to
the Clean Energy Ministerial. International Energy
Agency (IEA) Directorat (2013), 148.

21. Jakubiec, J. A., and Reinhart, C. F. DIVA 2.0:
Integrating daylight and thermal simulations using
rhinoceros 3D, DAYSIM and EnergyPlus. In
Proceedings of Building Simulation 2011: 12th
Conference of International Building Performance
Simulation Association (2011), 2202–2209.

22. Koltsova, A., Zurich, E., Schmitt, G., Schneider1, C.,
Koltsova2, A., Schmitt3, G., and Strasse, W. P.
Components for parametric urban design in Grasshopper
from street network to building geometry. Components
for Parametric Urban Design in Grasshopper. From
Street Network to Building Geometry. Tech. rep., 2011.

23. Lagios, K., Niemasz, J., and Reinhart F, C. Animated
Building Performance Simulation (Abps) – Linking
Rhinoceros / Grasshopper With Radiance / Daysim.
conference proceedings of SimBuild 2010, August
(2010), 7.

24. Lieberman, H., Paternò, F., Klann, M., and Wulf, V.
End-User Development: An Emerging Paradigm. In End
User Development. Springer Netherlands, 10 2006, 1–8.

25. Lieberman, H., Paternò, F., and Wulf, V. End-user
development. Tech. rep.

26. Mathworks. MATLAB - Mathworks - MATLAB &
Simulink, 2016.

27. McNeel, R. Grasshopper generative modeling for Rhino.
Computer software (2011b), http://www. grasshopper3d.
com (2010).

28. Mell, P., and Grance, T. The NIST Definition of Cloud
Computing Recommendations of the National Institute
of Standards and Technology. Tech. rep., 2011.

29. MENZIES, T. EVALUATION ISSUES FOR VISUAL
PROGRAMMING LANGUAGES. 5 2002, 93–101.

30. Moher, T. G., Mak, D. K. H., Blumenthal, B. B., and
Levanthal, L. M. Comparing the comprehensibility of
textual and graphical programs, 1993.

31. Molina-Solana, M., Ros, M., Ruiz, M. D.,
Gómez-Romero, J., and Martin-Bautista, M. J. Data
science for building energy management: A review,
2017.

32. Nardi, B. A small matter of programming: perspectives
on end user computing. 1993.

33. Peronato, G., Kämpf, J. H., Rey, E., and Andersen, M.
Integrating urban energy simulation in a parametric
environment: a Grasshopper interface for CitySim.
Tech. rep.

34. Ramaswamy, S., and Tripathi, R. Internet of Things
(IoT): A Literature Review. Journal of Computer and
Communications 3 (2015), 164–173.

35. Reen, T. R. G. G., and Etre, M. P. Usability Analysis of
Visual Programming Environments : A ’Cognitive
Dimensions’ Framework. Tech. rep., 1996.

36. Reviews, N. S. R., Energy, S., and 2012, u. Stochastic
techniques used for optimization in solar systems: A
review. Elsevier.

37. Rothermel, G., Shaw, M., and Wiedenbeck, S. The state
of the art in end-user software engineering. ACM
Comput. Surv 43 (2011), 44.

38. Roudsari, M., Pak, M., Lyon, A. S. I. c. h. i., France, u.,
and 2013, u. Ladybug: a parametric environmental
plugin for grasshopper to help designers create an
environmentally-conscious design. ibpsa.org.

39. Scaffidi, C., Shaw, M., and Myers, B. Estimating the
Numbers of End Users and End User Programmers. In
2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05), 207–214.

40. Schuldt, H. Multi-tier Architecture. In Encyclopedia of
Database Systems. Springer New York, 2017, 1–3.

41. Tardioli, G., Kerrigan, R., Oates, M., James, O.,
Procedia, D. F. E., and 2015, u. Data driven approaches
for prediction of building energy consumption at urban
level. Elsevier.

42. Taylor, P. The Three-Tier Architecture: An
Object-Oriented Perspective. 1998, 79–94.

43. US Department of Energy. Technology for Building
Systems Integration and Optimization – Landscape
Report.

44. Wijegunaratne, I., and Fernandez, G. Distributed
Applications Engineering. Practitioner Series. Springer
London, London, 1998.

45. Wong, J., Li, H., construction, S. W. A. i., and 2005, u.
Intelligent building research: a review. Elsevier.

46. Zhang, Z., Chong, A., Pan, Y., Zhang, C., and Lam,
K. P. Whole building energy model for HVAC optimal
control: A practical framework based on deep
reinforcement learning. Energy and Buildings 199
(2019), 472–490.

47. Zibion, D., Singh, D., Braun, M., and Yalcinkaya, D.
Development of a BIM-enabled Software Tool for
Facility Management using In-teractive Floor Plans,
Graph-based Data Management and Granular
Information.

48. Zou, P. X., Xu, X., Sanjayan, J., and Wang, J. Review of
10 years research on building energy performance gap:
Life-cycle and stakeholder perspectives, 11 2018.

452PREPRINT PREPRINT
Powered by TCPDF (www.tcpdf.org)

	1 Introduction
	2 Three-Tier Architecture
	3 actors
	4 Presentation Layer
	4.1 VPL/TPL interface
	4.2 Dashboard and forms

	5 Application Layer
	6 Data Layer
	7 Use case scenario
	8 Conclusion

