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ABSTRACT
Streetscape visualizations are necessary for the understand-
ing and evaluation of urban design alternatives. Along-
side blueprints and textual descriptions, these design aids
can affect city-form, building-codes and regulations for
decades to come. Yet despite major advancements in com-
puter graphics, crafting high-quality streetscape visualiza-
tions is still a complex, lengthy and costly task, especially
for real-time, multiparty design sessions. Here we present
DeepScope, a generative, lightweight and real-time plat-
form for urban planning and cityscape visualization. Deep-
Scope is composed of a Generative Neural Network (DC-
GAN) and a Tangible User Interface (TUI) designed for
multi-participants urban design sessions and real-time feed-
back. In this paper we explore the design, development
and deployment of the DeepScope platform, as well as
discuss the potential implementation of DeepScope in ur-
ban design processes. Demonstration and code are avail-
able at: https://www.media.mit.edu/projects/deep-image-of-
the-city/
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I.6.1 SIMULATION AND MODELING (e.g. Model Devel-
opment). See: http://www.acm.org/about/class/1998/
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1 INTRODUCTION: THE IMAGEABILITY OF THE CITY
“To understand the role of environmental images in our own
urban lives (...) we needed to develop and test the idea of im-
ageability (...) and thus to suggest some principles for urban
design.” [21]

Urban design renderings and streetscape visualizations are es-
sential for designers, stakeholders and decision-makers dur-
ing city-design processes. These visual aids can clarify the

Figure 1. DeepScope TUI: Multiple users can simultaneously interact and
discuss urban design iterations. The table-top is used as both the design space
and a schematic urban top-view. The vertical monitor visualizes the DCGAN
street view.

outcomes of complex design decisions, such as zoning, build-
ing codes or land-use allocations, and can affect urban de-
velopment for decades to come [1, 37]. The importance of
understating the impacts of urban design on the street-level
was known to architects and planners for centuries, but tools,
mediums and techniques to communicate these effects were
often limited [5].

In his seminal 1960 book, Kevin Lynch introduced ‘image-
ability’ as a novel approach to visual perception of urban
environments [21]. Lynch suggested a toolset for classifica-
tion of city-form, in which nodes, landmarks, paths, edges
and districts reflect the sensation of transitioning through the
urban scape. Later, in ‘The View From the Road’ study
[3], Lynch’s ‘imageability’ paradigm was tested using a new
medium: Lynch mounted a dashcam to a car, and went on
several rides around Boston and other US metros [2]. When
later played, these recordings were sped to reflect the overall
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Figure 2. Top row: Model trained on Cityscapes dataset, deployed as node.js app. Bottom row: TUI triggers DCGAN renderings.

‘feel’ and ‘mood’ of the road trip; Lynch proposed to over-
look fine-grained street elements or the architectural details,
and instead focus on the ‘imageability’ of the urban outline:
What is the composition of the built mass? What shapes
the street-section? Are there any noticeable landmarks? In
the following years, Lynch’s innovative documentation tech-
niques became mainstream tools in the field of urban-design
[7, 30].

1.1 The Challenge of Visualisation
Despite Lynch’s contribution to the perception of cities, doc-
umenting existing environments is not sufficient for predict-
ing the impact of future interventions. As Batty concludes,
urban visualizations are critical during initial design stages,
when the context of the design challenge is only being estab-
lished, as well as to the generation and evaluation of alter-
native designs [5]. In the last few decades, advancements in
CAD and computer graphics introduced numerous tools to vi-
sualize future urban developments [35, 17]. Yet despite their
abundance, only few tools offer real-time, realistic urban vi-
sualizations during collaborative design processes [26]. Most
CAD tools carry complex setups, costly hardware and soft-
ware, and steep learning curves [39, 22]. These tools often re-
quire users to set up many control parameters in virtual envi-
ronments, such as cameras, lights, materials or shaders. This
process might become laborious in complex design scenes,
and can gravely affect the outcome, cost and duration of vi-
sualization processes [19].

Moreover, common CAD User Interfaces rarely support
multi-user collaborative design. This limits decision-makers
and stakeholders from taking an active part in iterative design
sessions, and forces a synchronous decision making process.
Lastly, early urban design stages suffer from lack of design

details, which hinders realistic visualizations. These stages
commonly involves crude massing exercises, and lack street-
level details, so that visualizations are schematic at best [11,
6].

2 DEEPSCOPE: METHODOLOGY AND SYSTEM DESIGN
This paper presents DeepScope, a collaborative, tangible and
real-time urban design and visualization platform. Deep-
Scope allows multiple users to collaboratively perform early
urban design and land-use allocation sessions, and observe
the outcomes as realistic streetscape visuals. Unlike CAD
tools, DeepScope offers minimal setup, simple and cheap
hardware and software, and requires no expertise to use.

This section details the main parts of DeepScope: (i) a tangi-
ble user interface (TUI) for rapid urban prototyping, and (ii)
a Deep Convolutional Generative Adversarial Network (DC-
GAN) for visualizations: As users interact with the TUI, a
virtual city model is procedurally updated and fed into the
DCGAN model. The model then generates a cityscape vi-
sualization based on a user-selected view. The rest of this
section explores DeepScope TUI, hardware components, and
user interaction.

2.1 HCI Platform for Rapid Urban Prototyping
DeepScope Tangible User Interface (TUI) is built for itera-
tive urban design and land-use allocation. This TUI offers
a playful, multi-user tangible environment for design that is
augmented by real-time visualization.

Traditional Computer Aided Design (CAD) tools were com-
monly built around a single user with limited inputs (mouse,
keyboard) and outputs (monitor, printer). These interface
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Figure 3. DeepScope process: (a,b) designating an urban intervention site
(c) translating the site’s land-use/zoning bounds and (d) user-interaction into
(e) procedural 3D environment and (e) passing it to DCGAN model for gen-
eration of a street-view visualization

were not initially conceived as collaborative design tools,
even when computer networks became mainstream [38, 5].

In past decades, several TUIs have been developed to facili-
tate collaborative urban design, augmented by computational
analytics. Among these are the Augmented Urban Planning
Workbench, the I/O Bulb, The Clay Table and Sensetable [13,
14, 29], all built to allow teamwork and collaboration in ur-
ban design processes. In recent years, The MIT City Science
group has been developing CityScope (CS): an urban model-
ing, simulation and collaborative decision-making platform.
CS merges TUIs and analytical modules to support a collabo-
rative, evidence-based discourse around the built environment
[27]. For the purpose of this research, a CS instance was de-
veloped, constructed and tested in an active demonstration
space at the MIT Media Lab, Cambridge, MA.

2.2 DeepScope User Interaction
The TUI is composed of three components: (i) a physical ur-
ban model, (ii) a scanning module and (iii) a feedback mod-
ule. The urban model includes an arbitrary grid of tiles,
tagged with binary patterns. The tiles are made out of 4x4
LEGO bricks, which were found to induce interaction and
creativity during CS design sessions [27]. Each pattern is a
16 bit code of black or white 1x1 LEGO studs, allowing over
65,000 unique pre-defined land uses and attributes. Figure

Figure 4. Multi-user interaction with DeepScope. Depending on scale and
extents of urban context, design sessions can accommodate up to 15 users

Group Classes
flat road*+; sidewalk*+ parking*+; rail track
human person*; rider*

vehicle car*; truck*; bus*; on rails;
motorcycle; bicycle*; caravan; trailer

construction building; wall*; fence; guard rail; bridge
object pole*; pole group; traffic sign*; traffic light*
nature vegetation*+; terrain
sky sky*
void ground; dynamic; static

Table 1. Cityscapes classes: Marked with ‘plus’ are labels which can be
altered dynamically using CS TUI. Marked with ‘star’ are labels that are
generated dynamically in the 3D model

3.d depicts a user positioning a tagged LEGO brick into the
TUI design space.
Each grid-cell pattern represents a different streetscape class:
roads, buildings, green-spaces, parking, sidewalks, etc. Each
class instance contains additional parameters, such as height,
volume, shape, rotation or density. Table 1 specifies the
classes and their attributes. When the user shifts a tile, the
scanning module detects the interaction through a scanning
and networking tool using OpenCV and Node.js. Lastly, a
feedback module, containing monitors and projectors, com-
municates the interaction and analysis outcomes back to the
users. This interface has been shown to allow for rapid design
iteration, facilitate collaboration and engage users in urban
design processes [28].

2.3 Procedural Cityscape Environment
With each interaction, the scanner decodes the new grid-cell
patterns and updates the table’s data structure. This triggers
a regeneration of a virtual 3D environment, in which each
grid-cell is represented via its class and additional parame-
ters (see figure 5). As users allocate tiles, the environment
is procedurally filled with streetscape elements: a vegetation
pattern will create a surface with procedural trees, bushes or
live-fences; A sidewalk pattern will produce pedestrians and
street-signage, and a parking-lot pattern will be proliferated
with parked vehicles. This 3D environment is uniformly hued
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with RGB values that correspond to input classes expected by
the Neural Network model (see section 3). The scanning and
3D scene generation is done on a client-side web-browser us-
ing a simple webcam and a WebGL program [25].

Figure 5. TUI to latent space: TUI interactions are analyzed using OpenCV
and streamed as JSON with the webGL app. A 3D model is created based on
the JSON array and the Observer viewing angle. Lastly, a snapshot image is
fed as an input vector to the DCGAN model.

2.4 Observer
The urban environment designed by the users is constantly
‘photographed’ by the ‘Observer’ grid-cell. Similar to
Lynch’s ‘View form the Road’ [3], this unique pattern mim-
ics a virtual nomad in the city, and allow users to sets its
position, point-of-view and angle. The ‘observer’ baseline
parameters (such as FOV, Frustum and height) were approx-
imated to the camera calibration appendix of the Cityscapes
dataset [8]. Additional camera controls were implemented to
allow users to move, rotate, pan or zoom the ’observer’ by re-
locating the cell itself and via custom game-pad joystick (see
figure 6).

Figure 6. (left) User interaction with grid-cells. (right) ‘Observer’ viewing
angle, depth and position is set via an Arduino Gamepad

2.5 Table-Top Augmentation
The TUI table-top is used as the design space as well as a
canvas for visualization. With each design iteration, an il-
luminated land-use diagram is projected onto the table-top,
so that each tile is showing its respective pattern, name or
parameters (density, land use, etc.). The Observer position
is displayed using perspective cone that indicates its view-
ing angle and FOV (see figure 7). Together, DeepScope TUI
components allow multiple users to design and amend the ur-
ban environment and observe the effects of different scenarios
on its streetscape.

Figure 7. DeepScope TUI: (1) Observer position (2) Observer view angle
and FOV cone (3) Observer’s 3D street-view as input for DCGAN (4) DC-
GAN model prediction of street-view (5) TUI interactive grid

3 DEEPSCOPE GENERATIVE NEURAL NETWORK
In order to produce realistic street-view visualization, Deep-
Scope implements a Neural Network (NN) variant called
Deep Convolutional Generative Adversarial Network (DC-
GAN). Following TUI interactions, the Observer’s viewpoint
is captured and converted into an input vector for the DCGAN
(see figure 5). The DCGAN generates an image correspond-
ing to the input vector, where each pixel in the input vector
triggers a pixel in the DCGAN output. The resulting image is
then drawn onto the DeepScope feedback module. This sec-
tion explores the dataset, model architecture and NN training.

3.1 Dataset and Model Training
Accurate pattern recognition using NN was already feasible
in the late 1980’s [18]. However, generating new data that
well concatenates a given dataset is still considered a com-
plex problem in Machine Learning [9]. Data generation us-
ing NN was greatly advanced with the introduction of Gen-
erative Adversarial Networks (GANs)[12]. GANs use two
competing NN, Generator and Discriminator, that ‘adverse’
one another. The Generator attempts to create new data (such
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as image, sound or text), and the Discriminator aims to nul-
lify these ‘fake’ creations by comparing them to ground-truth
data. The training is completed when the Generator creates
indistinguishable samples that constantly fail the Discrimina-
tor [15].

3.2 Image-to-Image Translation
A branch of GAN is Conditional GAN (cGAN), in which
both NN are given additional data that focuses the generation
on specific targets [24, 33]. A notable use-case of cGAN is
a pixel-wise conditional generation of images, also known
as Image to Image Translation (I2I), or ‘pix2pix’ [16, 15].
In I2I, pairs of images are used for training, where the
pixel values of one image are used as labels (also known
as ’classes’) of the other. This allows pixel-level prediction
using spatial classification of regions in the image [4, 40].
DeepScope implements a lightweight variant of I2I that is
fitted for real-time predictions on low-tier devices.
In practice, cGANs extends the classic GAN zero-
sum objective function with additional ‘class’ data:
minG maxD V (D,G) = Ex∼pdata(x)[logD(x|y)] +
Ez∼pz(z)[log(1 − D(G(z|y)))]. Here, function V of
Generator and Discriminator G,D attempts to minimize a
delta between ground-truth data x (in this case, the pixel
data) and z, which is the accumulated pixel distribution
learnt on each training step (see figure 8). Unlike classic
GANs, logD(x|y) denotes that the additional ‘class’ data y
conditions the learning on both data x as well as on y class.
In this respect, distributions created by cGAN generator do
not only share resemblance to the learning dataset, but are
trained to mimic high-level data structure.

3.3 Cityscapes Dataset
DeepScope’s DCGAN model was trained on the Cityscapes
dataset [8]. Cityscapes is composed of pairs of street-view
images taken using a dashcam around 50 European cities,
during different seasons, daytime and weather conditions.
Each pair includes a street-view image and a correspond-
ing segmented image with 30 semantic labels. These la-
bels represent different streetscape classes, from buildings
and roads to license-plates and road signs. For DeepScope,
a pre-processing algorithm was designed to remove motion-
blur, increase sharpness, saturation and remove color-casting
which were common in a shots taken of a moving vehicle.

3.4 Model Architecture and Performance
DeepScope NN architecture was designed to allow fast pre-
dictions, minimal setup and high portability. The Generator
has 16 layers with a U-Net [32], encoder-decoder structure.
For performance purposes, the Discriminator has 5 layers and
is using Leaky ReLU activation that has been shown to im-
prove stability in training [31]. Commonly, DCGAN models
benefit from high number of filters set to detect patterns on in-
put data [32]. However, added filters increase the model size,
which can gravely impact real-time performance and usabil-
ity in low-tier devices. In order to still maintain attention to
fine details, a shallow NN design with a random up-sampling
of 150% was designed [16]. This design allows deployment
on most client-side browsers or even on mobile devices, as
long as Node.js and TensorFlow.js are supported [36].

Figure 8. Test samples of different epochs during training: Right column
shows quality degradation beyond 200epochs.

3.5 DCGAN Training and Results
As described in Model Architecture and Performance, porta-
bility and speed were key factors when balancing between
image quality and model size. 20 training sessions were per-
formed with 16,32,64 and 128 filters, with 50 to 2000 epochs.
Resulting models were converted to a web format and tested
for stability and response time on various client devices. A
trained model with 64 filters and 200 epochs showed the best
overall results. Models with less filters produced low-quality
results; models with 300-2000 epochs demonstrated incon-
sistencies and ‘mode collapse’ [4]. Models with more filter
were too slow to load and predict in real-time.

3.6 User Interaction Performance Test
In order to avoid interaction latency, two asynchronous pro-
cesses were used: (i) prediction process and (ii) TUI interac-
tion response. In preliminary user tests, the DCGAN model
predicts at ∼0.66sec/prediction and the TUI showed a fixed
response interval of 50ms. Although the DCGAN slightly

165PREPRINT PREPRINT



trails the TUI, the observation showed that users tend to fo-
cus attention to the TUI before expecting the DCGAN output.
In that sense, the overall user experience could be considered
real-time with continuous design-and-feedback loops [10].

4 DISCUSSION AND CONCLUSION
This paper described DeepScope, a tangible urban design
platform for real-time street-view visualization. Visualiza-
tions are created using a Deep Convolutional Generative
Adversarial Network (DCGAN) trained on the Cityscapes
dataset. A tangible user interface for rapid urban prototyp-
ing was created for iterations and feedback. The rest of this
section will discuss the strengths, weaknesses, threats and op-
portunities of this work.

4.1 Strengths
DeepScope is designed to allow experts and non-
professionals alike to collaboratively experiment with
urban design scenarios and real-time feedback. The platform
can augment early stages of cityscape design with vivid
street-view visuals. These stages have major impacts on
urban form and spatial organization of cities, but commonly
lack sufficient design representation [5]. Unlike traditional
CAD tools, the complexity of creating a 3D urban scene is
carried out by DeepScope pre-trained NN. Designed for the
web, DeepScope is ‘platform-agnostic’ and requires minimal
computational resources, making it more accessible and
portable for public participation. Lastly, the ‘unpolished’
nature of the GAN outcome allows designers and regulators
to focus on the overall ‘feel’ of the ‘Image of the City’,
instead of highly-specific design details [21].

4.2 Weaknesses
Despite the promise of generative NN, GANs have several
drawbacks. First, GANs require large and properly labeled
datasets; as such, creating a new Cityscapes dataset for other
geographies will involve significant efforts. Several emerging
methods suggest decoupled [40] and label-less learning [20],
which can simplify the labeling effort. Nevertheless, dataset
collection and partial labeling would still be required. More-
over, GANs tend to be inconsistent during learning process,
as explored in DCGAN Training and Results [34]. Lastly, the
DeepScope GAN would not be able to visualize non-street
view angles: Since the Cityscapes dataset was captured using
a vehicle dashcam, only matching angles produce reasonable
predictions [33]. This issue is common amongst supervised
NN, and requires either non-supervised methods or more ex-
tensive datasets.

4.3 Threats
The rising popularity of GANs is greatly attributed to their
ability to ‘create’. Nevertheless, GANs tend to be unpre-
dictable in their results. When it comes to the design prac-
tice, certain degree of ‘creative freedom’ might be desired, yet
unpredicted tools might cause resentment or misleading im-
pressions. In the context of DeepScope, the same street-view
angle with the same urban-design setup, might produce dif-
ferent visual results if ran twice. While the authors perceive
that as a design feature and manifestation of Kevin Lynch’s

‘Imageability’ concept [21], others might observe this as a
sign to an untamed technology. Additionally, NN are strictly
bounded by their architecture and training data. Tempered
NN or datasets can greatly affect the outcomes of the model
and inject bias into the results. With machine-learning tools
becoming mainstream in the design industry, these concerns
should be addressed by testing, validating and open-sourcing
design tools, models and data.

4.4 Opportunities
DeepScope can be improved in several aspects: First, emerg-
ing NN architectures and training parameters can improve
the DCGAN results. Other methods, such as VAE or auto
GANs, can produce finer results with greater control [23]. As
well, extending the training datasets to different urban envi-
ronments could yield more versatile representations. Lastly,
the TUI can be improved to include multi-scale environments
and more finer-grained editing capability.

4.5 Applications and Real-World Implementations
As mentioned in section 2.1, a prototype of DeepScope was
constructed and tested in an active demonstration area at the
MIT Media Laboratory in Fall ’19. During this period, hun-
dreds of design-professionals and random visitors interacted
with the tool; their input was incorporated into the UI/UX
design and HCI factors of the tool. The most prevailing com-
ments were gathered to appear in this SWOT Analysis.
Currently, DeepScope development is on two major trajecto-
ries: [i] Implementation of DeepScope as a native CityScope
module: The CityScope platform is in the process of adapting
a micro-services architecture, in which modules of urban an-
alytics can be ‘plugged’ into the system when needed. In this
context, DeepScope would be used not as a standalone tool,
but rather as an additional analysis layer, side by side with
other urban matrices (such as noise, ABM, traffic, etc.)
[ii] Real-world testing and deployment: As a standalone tool,
DeepScope is now being tested as part of an urban modelling
system used in an international urban design competition for
a major European city. In the context of this competition, the
tool will be used to evaluate street-language and urban form
for different design proposals which are at an early schematic
design phase. Using DeepScope, both the design teams as
well as the jurors would be able to quickly evaluate early-
stage urban design decisions, and amend them during ses-
sions. Lastly, the tool might also be incorporated in public
participation process in which participants could get better
understanding on the implications of different planning alter-
natives.
More broadly, DeepScope might hint to a future of insightful
CAD tools, spanning beyond digital rulers and drafting aids.
Such tools would not only expedite tedious tasks, but might
be able to leverage the power of advanced computation and
become insightful design ‘companions’.
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