A Deep Image of the City: Generative Urban-Design Visualization

Ariel Noyman¹, Kent Larson²

¹City Science Group, MIT Media Lab, Cambridge, MA, noyman@mit.edu
²City Science Group, MIT Media Lab, Cambridge, MA, kll@mit.edu

ABSTRACT
Streetscape visualizations are necessary for the understanding and evaluation of urban design alternatives. Alongside blueprints and textual descriptions, these design aids can affect city-form, building-codes and regulations for decades to come. Yet despite major advancements in computer graphics, crafting high-quality streetscape visualizations is still a complex, lengthy and costly task, especially for real-time, multiparty design sessions. Here we present DeepScope, a generative, lightweight and real-time platform for urban planning and cityscape visualization. DeepScope is composed of a Generative Neural Network (DCGAN) and a Tangible User Interface (TUI) designed for multi-participants urban design sessions and real-time feedback. In this paper we explore the design, development and deployment of the DeepScope platform, as well as discuss the potential implementation of DeepScope in urban design processes. Demonstration and code are available at: https://www.media.mit.edu/projects/deep-image-of-the-city/

Author Keywords
Urban design; GANs; Generative Design; Visualization; Collaborative Planning

ACM Classification Keywords
I.6.1 SIMULATION AND MODELING (e.g. Model Development). See: http://www.acm.org/about/class/1998/ for more information and the full list of ACM classifiers and descriptors.

1 INTRODUCTION: THE IMAGEABILITY OF THE CITY
“To understand the role of environmental images in our own urban lives (...) we needed to develop and test the idea of imageability (...) and thus to suggest some principles for urban design.” [21]

Urban design renderings and streetscape visualizations are essential for designers, stakeholders and decision-makers during city-design processes. These visual aids can clarify the outcomes of complex design decisions, such as zoning, building codes or land-use allocations, and can affect urban development for decades to come [1, 37]. The importance of understanding the impacts of urban design on the street-level was known to architects and planners for centuries, but tools, mediums and techniques to communicate these effects were often limited [5].

In his seminal 1960 book, Kevin Lynch introduced ‘imageability’ as a novel approach to visual perception of urban environments [21]. Lynch suggested a toolset for classification of city-form, in which nodes, landmarks, paths, edges and districts reflect the sensation of transitioning through the urban scape. Later, in ‘The View From the Road’ study [3], Lynch’s ‘imageability’ paradigm was tested using a new medium: Lynch mounted a dashcam to a car, and went on several rides around Boston and other US metros [2]. When later played, these recordings were sped to reflect the overall
‘feel’ and ‘mood’ of the road trip; Lynch proposed to over-
look fine-grained street elements or the architectural details,
and instead focus on the ‘imageability’ of the urban outline:
What is the composition of the built mass? What shapes
the street-section? Are there any noticeable landmarks? In
the following years, Lynch’s innovative documentation tech-
niques became mainstream tools in the field of urban-design
[7, 30].

1.1 The Challenge of Visualisation
Despite Lynch’s contribution to the perception of cities, doc-
umenting existing environments is not sufficient for predict-
ing the impact of future interventions. As Batty concludes,
urban visualizations are critical during initial design stages,
when the context of the design challenge is only being estab-
lished, as well as to the generation and evaluation of alter-
native designs [5]. In the last few decades, advancements in
CAD and computer graphics introduced numerous tools to vi-
sualize future urban developments [35, 17]. Yet despite their
abundance, only few tools offer real-time, realistic urban vi-
sualizations during collaborative design processes [26]. Most
CAD tools carry complex setups, costly hardware and soft-
ware, and steep learning curves [39, 22]. These tools often re-
quire users to set up many control parameters in virtual envi-
ronments, such as cameras, lights, materials or shaders. This
process might become laborious in complex design scenes,
and can gravely affect the outcome, cost and duration of vi-
sualization processes [19].

Moreover, common CAD User Interfaces rarely support
multi-user collaborative design. This limits decision-makers
and stakeholders from taking an active part in iterative design
sessions, and forces a synchronous decision making process.
Lastly, early urban design stages suffer from lack of design
details, which hinders realistic visualizations. These stages
commonly involves crude massing exercises, and lack street-
level details, so that visualizations are schematic at best [11,
6].

2 DEEPSCOPE: METHODOLOGY AND SYSTEM DESIGN
This paper presents DeepScope, a collaborative, tangible and
real-time urban design and visualization platform. Deep-
Scope allows multiple users to collaboratively perform early
urban design and land-use allocation sessions, and observe
the outcomes as realistic streetscape visuals. Unlike CAD
tools, DeepScope offers minimal setup, simple and cheap
hardware and software, and requires no expertise to use.

This section details the main parts of DeepScope: (i) a tangi-
ble user interface (TUI) for rapid urban prototyping, and (ii)
a Deep Convolutional Generative Adversarial Network (DC-
GAN) for visualizations: As users interact with the TUI, a
virtual city model is procedurally updated and fed into the
DCGAN model. The model then generates a cityscape vi-
sualization based on a user-selected view. The rest of this
section explores DeepScope TUI, hardware components, and
user interaction.

2.1 HCI Platform for Rapid Urban Prototyping
DeepScope Tangible User Interface (TUI) is built for itera-
tive urban design and land-use allocation. This TUI offers
a playful, multi-user tangible environment for design that is
augmented by real-time visualization.

Traditional Computer Aided Design (CAD) tools were com-
monly built around a single user with limited inputs (mouse,
keyboard) and outputs (monitor, printer). These interface
were not initially conceived as collaborative design tools, even when computer networks became mainstream [38, 5].

In past decades, several TUIs have been developed to facilitate collaborative urban design, augmented by computational analytics. Among these are the Augmented Urban Planning Workbench, the I/O Bulb, The Clay Table and Sensetable [13, 14, 29], all built to allow teamwork and collaboration in urban design processes. In recent years, The MIT City Science group has been developing CityScope (CS): an urban modeling, simulation and collaborative decision-making platform. CS merges TUIs and analytical modules to support a collaborative, evidence-based discourse around the built environment [27]. For the purpose of this research, a CS instance was developed, constructed and tested in an active demonstration space at the MIT Media Lab, Cambridge, MA.

2.2 DeepScope User Interaction

The TUI is composed of three components: (i) a physical urban model, (ii) a scanning module and (iii) a feedback module. The urban model includes an arbitrary grid of tiles, tagged with binary patterns. The tiles are made out of 4x4 LEGO bricks, which were found to induce interaction and creativity during CS design sessions [27]. Each pattern is a 16 bit code of black or white 1x1 LEGO studs, allowing over 65,000 unique pre-defined land uses and attributes. Figure 3.d depicts a user positioning a tagged LEGO brick into the TUI design space. Each grid-cell pattern represents a different streetscape class: roads, buildings, green-spaces, parking, sidewalks, etc. Each class instance contains additional parameters, such as height, volume, shape, rotation or density. Table 1 specifies the classes and their attributes. When the user shifts a tile, the scanning module detects the interaction through a scanning and networking tool using OpenCV and Node.js. Lastly, a feedback module, containing monitors and projectors, communicates the interaction and analysis outcomes back to the users. This interface has been shown to allow for rapid design iteration, facilitate collaboration and engage users in urban design processes [28].

2.3 Procedural Cityscape Environment

With each interaction, the scanner decodes the new grid-cell patterns and updates the table’s data structure. This triggers a regeneration of a virtual 3D environment, in which each grid-cell is represented via its class and additional parameters (see figure 5). As users allocate tiles, the environment is procedurally filled with streetscape elements: a vegetation pattern will create a surface with procedural trees, bushes or live-fences; A sidewalk pattern will produce pedestrians and street-signage, and a parking-lot pattern will be proliferated with parked vehicles. This 3D environment is uniformly hud
with RGB values that correspond to input classes expected by the Neural Network model (see section 3). The scanning and 3D scene generation is done on a client-side web-browser using a simple webcam and a WebGL program [25].

2.4 Observer

The urban environment designed by the users is constantly 'photographed' by the ‘Observer’ grid-cell. Similar to Lynch’s ‘View form the Road’ [3], this unique pattern mimics a virtual nomad in the city, and allow users to sets its position, point-of-view and angle. The ‘observer’ baseline parameters (such as FOV, Frustum and height) were approximated to the camera calibration appendix of the Cityscapes dataset [8]. Additional camera controls were implemented to allow users to move, rotate, pan or zoom the ‘observer’ by relocating the cell itself and via custom game-pad joystick (see figure 6).

2.5 Table-Top Augmentation

The TUI table-top is used as the design space as well as a canvas for visualization. With each design iteration, an illuminated land-use diagram is projected onto the table-top, so that each tile is showing its respective pattern, name or parameters (density, land use, etc.). The Observer position is displayed using perspective cone that indicates its viewing angle and FOV (see figure 7). Together, DeepScope TUI components allow multiple users to design and amend the urban environment and observe the effects of different scenarios on its streetscape.

3 DEEPSCOPE GENERATIVE NEURAL NETWORK

In order to produce realistic street-view visualization, DeepScope implements a Neural Network (NN) variant called Deep Convolutional Generative Adversarial Network (DCGAN). Following TUI interactions, the Observer’s viewpoint is captured and converted into an input vector for the DCGAN (see figure 5). The DCGAN generates an image corresponding to the input vector, where each pixel in the input vector triggers a pixel in the DCGAN output. The resulting image is then drawn onto the DeepScope feedback module. This section explores the dataset, model architecture and NN training.

3.1 Dataset and Model Training

Accurate pattern recognition using NN was already feasible in the late 1980’s [18]. However, generating new data that well concatenates a given dataset is still considered a complex problem in Machine Learning [9]. Data generation using NN was greatly advanced with the introduction of Generative Adversarial Networks (GANs)[12]. GANs use two competing NN, Generator and Discriminator, that ‘adverse’ one another. The Generator attempts to create new data (such
as image, sound or text), and the Discriminator aims to nullify these ‘fake’ creations by comparing them to ground-truth data. The training is completed when the Generator creates indistinguishable samples that constantly fail the Discriminator [15].

3.2 Image-to-Image Translation
A branch of GAN is Conditional GAN (cGAN), in which both NN are given additional data that focuses the generation on specific targets [24, 33]. A notable use-case of cGAN is a pixel-wise conditional generation of images, also known as Image to Image Translation (I2I), or ‘pix2pix’ [16, 15]. In I2I, pairs of images are used for training, where the pixel values of one image are used as labels (also known as ‘classes’) of the other. This allows pixel-level prediction using spatial classification of regions in the image [4, 40]. DeepScope implements a lightweight variant of I2I that is fitted for real-time predictions on low-tier devices.

In practice, cGANs extend the classic GAN zero-sum objective function with additional ‘class’ data:

$$\min_G \max_D V(D,G) = \mathbb{E}_{x \sim p_{data}} [\log D(x|y)] + \mathbb{E}_{z \sim p_z} [\log (1 - D(G(z)|y))]$$

Here, function V of Generator and Discriminator G, D attempts to minimize a delta between ground-truth data x (in this case, the pixel data) and z, which is the accumulated pixel distribution learnt on each training step (see figure 8). Unlike classic GANs, $\log D(x|y)$ denotes that the additional ‘class’ data y conditions the learning on both data x as well as on y class.

This respect, distributions created by cGAN generator do not only share resemblance to the learning dataset, but are trained to mimic high-level data structure.

3.3 Cityscapes Dataset
DeepScope’s DCGAN model was trained on the Cityscapes dataset [8]. Cityscapes is composed of pairs of street-view images taken using a dashcam around 50 European cities, during different seasons, daytime and weather conditions. Each pair includes a street-view image and a corresponding segmented image with 30 semantic labels. These labels represent different streetscape classes, from buildings and roads to license-plates and road signs. For DeepScope, a pre-processing algorithm was designed to remove motion-blur, increase sharpness, saturation and remove color-casting which were common in a shots taken of a moving vehicle.

3.4 Model Architecture and Performance
DeepScope NN architecture was designed to allow fast predictions, minimal setup and high portability. The Generator has 16 layers with a U-Net [32], encoder-decoder structure. For performance purposes, the Discriminator has 5 layers and is using Leaky ReLU activation that has been shown to improve stability in training [31]. Commonly, DCGAN models benefit from high number of filters set to detect patterns on input data [32]. However, added filters increase the model size, which can gravely impact real-time performance and usability in low-tier devices. In order to still maintain attention to fine details, a shallow NN design with a random up-sampling of 150% was designed [16]. This design allows deployment on most client-side browsers or even on mobile devices, as long as Node.js and TensorFlow.js are supported [36].

![Figure 8. Test samples of different epochs during training: Right column shows quality degradation beyond 200 epochs.](image)

3.5 DCGAN Training and Results
As described in Model Architecture and Performance, portability and speed were key factors when balancing between image quality and model size. 20 training sessions were performed with 16, 32, 64 and 128 filters, with 50 to 2000 epochs. Resulting models were converted to a web format and tested for stability and response time on various client devices. A trained model with 64 filters and 200 epochs showed the best overall results. Models with less filters produced low-quality results; models with 300-2000 epochs demonstrated inconsistencies and ‘mode collapse’ [4]. Models with more filter were too slow to load and predict in real-time.

3.6 User Interaction Performance Test
In order to avoid interaction latency, two asynchronous processes were used: (i) prediction process and (ii) TUI interaction response. In preliminary user tests, the DCGAN model predicts at ~ 0.66sec/prediction and the TUI showed a fixed response interval of 50ms. Although the DCGAN slightly
trails the TUI, the observation showed that users tend to focus attention to the TUI before expecting the DCGAN output. In that sense, the overall user experience could be considered real-time with continuous design-and-feedback loops [10].

4 DISCUSSION AND CONCLUSION

This paper described DeepScope, a tangible urban design platform for real-time street-view visualization. Visualizations are created using a Deep Convolutional Generative Adversarial Network (DCGAN) trained on the Cityscapes dataset. A tangible user interface for rapid urban prototyping was created for iterations and feedback. The rest of this section will discuss the strengths, weaknesses, threats and opportunities of this work.

4.1 Strengths

DeepScope is designed to allow experts and non-professionals alike to collaboratively experiment with urban design scenarios and real-time feedback. The platform can augment early stages of citiescape design with vivid street-view visuals. These stages have major impacts on urban form and spatial organization of cities, but commonly lack sufficient design representation [5]. Unlike traditional CAD tools, the complexity of creating a 3D urban scene is carried out by DeepScope pre-trained NN. Designed for the web, DeepScope is ‘platform-agnostic’ and requires minimal computational resources, making it more accessible and portable for public participation. Lastly, the ‘unpolished’ nature of the GAN outcome allows designers and regulators to focus on the overall ‘feel’ of the ‘Image of the City’, instead of highly-specific design details [21].

4.2 Weaknesses

Despite the promise of generative NN, GANs have several drawbacks. First, GANs require large and properly labeled datasets; as such, creating a new Cityscapes dataset for other geographies will involve significant efforts. Several emerging methods suggest decoupled [40] and label-less learning [20], which can simplify the labeling effort. Nevertheless, dataset collection and partial labeling would still be required. Moreover, GANs tend to be inconsistent during learning process, as explored in DCGAN Training and Results [34]. Lastly, the DeepScope GAN would not be able to visualize non-street view angles: Since the Cityscapes dataset was captured using a vehicle dashcam, only matching angles produce reasonable predictions [33]. This issue is common amongst supervised NN, and requires either non-supervised methods or more extensive datasets.

4.3 Threats

The rising popularity of GANs is greatly attributed to their ability to ‘create’. Nevertheless, GANs tend to be unpredictable in their results. When it comes to the design practice, certain degree of ‘creative freedom’ might be desired, yet unpredicted tools might cause resentment or misleading impressions. In the context of DeepScope, the same street-view angle with the same urban-design setup, might produce different visual results if run twice. While the authors perceive that as a design feature and manifestation of Kevin Lynch’s ‘Imageability’ concept [21], others might observe this as a sign to an untamed technology. Additionally, NN are strictly bounded by their architecture and training data. Tempered NN or datasets can greatly affect the outcomes of the model and inject bias into the results. With machine-learning tools becoming mainstream in the design industry, these concerns should be addressed by testing, validating and open-sourcing design tools, models and data.

4.4 Opportunities

DeepScope can be improved in several aspects: First, emerging NN architectures and training parameters can improve the DCGAN results. Other methods, such as VAE or auto GANs, can produce finer results with greater control [23]. As well, extending the training datasets to different urban environments could yield more versatile representations. Lastly, the TUI can be improved to include multi-scale environments and more finer-grained editing capability.

4.5 Applications and Real-World Implementations

As mentioned in section 2.1, a prototype of DeepScope was constructed and tested in an active demonstration area at the MIT Media Laboratory in Fall ’19. During this period, hundreds of design-professionals and random visitors interacted with the tool; their input was incorporated into the UI/UX design and HCI factors of the tool. The most prevailing comments were gathered to appear in this SWOT Analysis. Currently, DeepScope development is on two major trajectories: [i] Implementation of DeepScope as a native CityScope module: The CityScope platform is in the process of adapting a micro-services architecture, in which modules of urban analytics can be ‘plugged’ into the system when needed. In this context, DeepScope would be used not as a standalone tool, but rather as an additional analysis layer, side by side with other urban matrices (such as noise, ABM, traffic, etc.) [ii] Real-world testing and deployment: As a standalone tool, DeepScope is now being tested as part of an urban modelling system used in an international urban design competition for a major European city. In the context of this competition, the tool will be used to evaluate street-language and urban form for different design proposals which are at an early schematic design phase. Using DeepScope, both the design teams as well as the jurors would be able to quickly evaluate early-stage urban design decisions, and amend them during sessions. Lastly, the tool might also be incorporated in public participation process in which participants could get better understanding on the implications of different planning alternatives.

More broadly, DeepScope might hint to a future of insightful CAD tools, spanning beyond digital rulers and drafting aids. Such tools would not only expedite tedious tasks, but might be able to leverage the power of advanced computation and become insightful design ‘companions’.
REFERENCES

